

брокеры rubus BMH

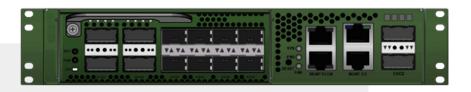
ОСНОВНЫЕ ПРЕИМУЩЕСТВА

УПРАВЛЕНИЕ, ИНТЕГРАЦИЯ И УСТАНОВКА

- Имеет небольшие габариты, отличается невысокими требованиями к пространству, питанию и охлаждению
- Модульная архитектура для гибкости и масштабируемости для адаптации под новые задачи
- Быстрая программируемая реакция на обнаруживаемые события
- Улучшенная интеграция
 с инструментами, контроллерами
 и другими системами инфраструктуры

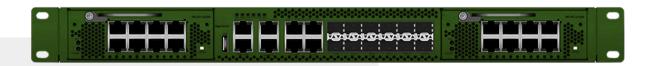
ПЕРЕДАЧА ТРАФИКА ДЛЯ ПОДРАЗДЕЛЕНИЙ АДМИНИСТРИРОВАНИЯ СЕТИ И ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ

- Оптимизация доставки сетевого трафика к средствам мониторинга и безопасности:
 - Устранение конкуренции за доступ к трафику сети обеспечивает одновременный доступ всем желающим
- Передача каждому подключенному получателю только необходимого ему трафика
- Распределение нагрузки трафика между несколькими инструментами, даже для инскапсулированных потоков данных

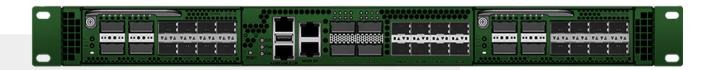

- Обширный инструментарий модернизации передаваемой копии трафика:
 - Удаление дублирующихся пакетов
 - Формирование Netflow, IPFIX и СЕГ из копии трафика с возможностью передачи на несколько коллекторов
 - Удаление ненужных/ нежелательных заголовков протоколов и/или обрезание данных верхнеуровневых протоколов
 - Маскирование конфиденциальных и персональных данных

- Агрегация и репликация трафика без ограничений по скорости
- Использование существующих инструментов мониторинга сети и кибербезопасности для новых сегментов, ЦОД и сред виртуализации
- Масштабирование зоны покрытия сети и непрерывное развертывание инструментов
- Упрощенное масштабирование существующих и внедрение новых платформ мониторинга и кибербезопасности.

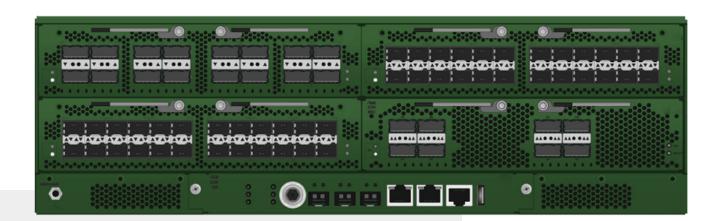
Оборудование серии rubus BMH решает практические любые задачи по доставке копии сетевого трафика, ее модификации и оптимизации для обеспечения максимально эффективной работы платформ-получателей и минимизации воздействия на сетевую инфраструктуру. Эти пакетные брокеры нового поколения являются идеальным выбором для оптимизации работы ваших инструментов безопасности и мониторинга.


Серия rubus BMH предлагает высокую производительность до 25 Тбитс/с трафика на 32 узлах собранных в едииный кластер и предоставляет большую вариативность в постобработке передаваемой копии трафика, позволяет решать любые задачи подключения как пассивных, так и активных инструментов безопасности и мониторинга в сеть.

rubus BMH1001


- Модель имеет высоту 1RU*.
- Возможна установка двух устройств в 1 RU*.
- Компактный формфактор для небольших инсталляций или установки в удаленных офисах.
- Один слот для модулей расширения от ВМН1010 и все преимущества серии ВМН.

rubus BMH1010


- Модель имеет высоту 1RU*.
- Имеет встроенный сервисный модуль и 2 слота для установки модулей расширения.
- Решает задачи обработки относительно небольших объемов трафика или установки в удаленные филиалы.

rubus BMH1011

- Модель имеет высоту 1RU*.
- Имеет встроенный сервисный модуль Зго поколения и 2 слота для установки модулей расширения.
- Рассматривается как высокопроизводительная модель для инсталляций среднего размера.

rubus BMH1030

- Модель имеет высоту 3RU.
- Высокопроизводительная модель с 4-мя слотами для комплектования интерфейсными и сервисными модулями.
- Старшая модель в семействе ВМН для решения задач по обработке больших объемов трафика.

КЛЮЧЕВЫЕ ВОЗМОЖНОСТИ И ПРЕИМУЩЕСТВА

ДОСТУП К СЕТИ И ТРАФИКУ

Четыре модульные модели шасси с возможностью выбора компоновки и модернизации:

- 10 Мб, 100 Мб, 1000 Мб и 10 Гб (медь);
- 1 Гб, 10 Гб, 25 Гб, 40 Гб и 100 Гб многомодовое и одномодовое оптоволокно;
- Совместимость с трансиверами SFP, SFP+, QSFP+ и QSFP28 MSA;
- Масштабирование путем добавления новых модулей и объединения их в кластер:
 - Развитие платформы по мере ее роста;
 - Высокая гибкость решения.

Возможность изменения конфигурации портов:

- Полная гибкость при выборе портов в качестве входных, промежуточных, кластерных или выходных;
- Каждый порт может быть как однонаправленным, так и двунаправленным;
- Передача\получение копии трафика через виртуальные туннели (например, L2GRE, ERSPAN, VXLAN);
- Возможность быстрого реагирования на изменения в инфраструктуре мониторинга и требованиям к ней;
- Возможность одновременно подключать как активные, так и пассивные инструменты мониторинга и безопасности;
- Обеспечение доступа к трафику сред виртуализации, или отправки копии трафика получателям, находящимся в виртуальной среде.

МОДИФИКАЦИЯ ТРАФИКА

Удаление заголовков, маскировка полей данных, генерация NetFlow\CEF\IPFIX из копии трафика, обрезка поля данных, усовершенствованное туннелирование, фильтрация по сигнатурам и приложений, генерация IPFIX с информационными элементами до 7-го уровня.

РАБОТА С ТРАФИКОМ СЕТЕЙ МОБИЛЬНОЙ ПЕРЕДАЧИ ДАННЫХ

Корреляция 5G, корреляция GTP, балансировка нагрузки с сохранением абонентской сессии, копирование и фильтрация трафика абонентов по различным критериям (QCI, APN, IMSI, IMEI, MSISD...).

РАБОТА С ШИФРОВАННЫМ ТРАФИКОМ

Расшифровка TLS/SSL как для активных, так и для пассивных инструментов безопасности и мониторинга.

АДМИНИСТРИРОВАНИЕ И МОНИТОРИНГ

Управление с помощью:

- Интерфейс командной строки (CLI);
- SSH;
- XML API (HTTP/HTTPS);
- Протокол управления (HTTP/HTTPS);
- SNMP (v1, v2, v3);
- Syslog;
- Простота управления через CLI для пользователей, уже знакомых с Cisco;
- Простота интеграции с приложениями с помощью CLI или RESTful API;
- Поддержка парадигмы SDN;
- Управление и организация из одного окна:
- Уведомления могут быть получены любым сервером syslog.

Доступ пользователей:

- Поддержка ролевой модели доступа (RBAC):
 - Многопользовательский доступ;
 - Гибкое определение полномочий в зависимости от пользователя/роли, экранов для визуального наблюдения и доступа.
- Посессионная балансировка трафикаот пользователя/роли, экранов для визуального наблюдения и доступа;
- ААА-безопасность (аутентификация, авторизация и учет) с локальной и дистанционной аутентификацией (LDAP, RADIUS, TACACS+);
- Автоматизированная среда управления сертификатами (ACME);
- Соблюдение корпоративных политик IT-безопасности;
- Соблюдение корпоративных ІТ-политик аутентификации;
- Автоматическое обновление сертификатов аутентификации из систем управления сертификатами предприятия и репозиториев.

СИСТЕМА

Элементы оборудования с «горячей» заменой:

- Интерфейсные модули;
- Модули питания;
- Блоки вентиляторов;
- Большое время безаварийной работы.

производительность шасси

Параметр	BMH1001	BMH1010	BMH1011	BMH1030
Размер	Малый (1RU, занимает половину юнита)	Малый (1RU)	Малый (1RU)	Большой (3RU)
Производительность	500 Гбит/с	604 Гбит/с	1,8 Тбит/с	6,4 Тбит/с
Кол-во интерфейсных модулей	1	2	2	4
Кол-во сервисных модулей	1	3 (2 передних, 1 встроенный)	3 (2 передних, 1 встроенный)	4 (передний)
Кол-во сопроцессоров	1	3	3	8 (2 на модуль)
Кол-во портов и их пропус	скная способность			
10/100 M6	6	32 (4 встроенных RJ45)		
1 F6	8	40 (12 встроенных SFP + и 4 встроенных RJ45)	32 (8 встроенных SFP28)	
10 Гб	32	60*(12 встроенных SFP+)	72*(8 встроенных SFP28 и 4 встроенных QSFP28)	128*
25 Г6	12		72*(8 встроенных SFP28 и 4 встроенных QSFP28)	128*
40 Гб	6	8	12 (4 встроенных QSFP28)	64
100 Гб	2	-	12 (4 встроенных QSFP28)	64
Доступные типы физического ByPass:	10/100/100 Мб (медь) 1/10 Гб (оптика SX/SR)	1/10 Гб (оптика SX/SR), 1/10 Гб (оптика LX/LR), 10/100/1000 Мб (медь)	1/10 Гб (оптика SX/SR), 1/10 Гб (оптика LX/LR), 1000 Мб (медь)	40/100 Гб (оптика SR4), 10/25 Гб (оптика SR) 40/100 Гб (оптика LR4)

^{*} При использовании расщепления портов

МАКСИМАЛЬНАЯ ПРОИЗВОДИТЕЛЬНОСТЬ: ВХОДНЫЕ ДАННЫЕ ФИЛЬТРАЦИИ

Тип фильтрации	BMH1001	BMH1010	BMH1011	BMH1030
Кол-во политик фильтрации	3 k	16 k	36 k	6 k
Кол-во фильтров на входящих портах	448	448	448	448
Слотов на шасси	1	2	2	4

МОДЕЛИ СЕРИИ ВМН10XX

Изделие	Описание	BMH1001	ВМН1010	BMH1011
BMH10xx-BPS-2SR	Комбинированный модуль с ByPass, BMH10xx, 2 пары SX/SR 50/125 BPS, + 4 гнезда 10G SFP	•	•	•
BMH10xx-BPS-6SR	Модуль с ByPass, BMH1010-Plus, 6 пар 1/10G SX/SR 50/125 BPS.	•	•	•
BMH10xx-BPS-6LR	Модуль с ByPass, BMH1010-Plus, BMH1010,s, 6 пар 1/10G LX/LR BPS.	•	•	•
BMH10xx-Q4X8	Интерфейсный модуль, BMH10xx скорость передачи информации в порте – 4 x 40G, 8 x 10G. В ВМН1011 скорость передачи информации в порте – 4 x 100G, 8 x 25G. В ВМН1001 скорость передачи информации в порте – 4 x 40G, 4 x 25G, 4 x 10G.	•	•	•
BMH10xx-BPS-2SR	Интерфейсный модуль, BMH1011, BMH1010, 12x10G SFP + слоты.	•	•	•
BMH10xx-SM-S	Сервисный модуль 3-го поколения для ВМН10хх. Включает ПО для обрезки поля данных, маскировки данных и маркировкивходящего порта.	•	•	•
BMH10xx-4xC	Модули ТАР и Bypass, BMH10xx -10/100/1000M (медь), 4 пары ТАР или Bypass. В BMH1010 скорость передачи информации в порте — 10/100/1000M. В BMH1011/ BMH1001 скорость порта составляет только 1000M.	•	•	•

модули вмн1030

Изделие	Описание
BMH1030-SM-C5	Сервисный модуль 2-го поколения, BMH1030, слоты 5x100G QSFP28 (включая ПО для слайсинга, маскировки данных, добавления метки исходного порта и ПО для декапсуляции туннелирования).
BMH1030-SM-C8	Сервисный модуль 3-го поколения BMH1030, слоты 8x100G QSFP28 (включая ПО для слайсинга, маскировки данных, добавления метки исходного порта и ПО для декапсуляции туннелирования)
ВМН1030-Х24	Интерфейсный модуль, BMH1030, 24x10G
ВМН1030-C8Q8	Интерфейсный модуль, BMH1030, слоты 8x100G QSFP28 и 8x40G QSFP+ слоты.
ВМН1030-С16	Интерфейсный модуль, BMH1030, слоты 16x100G QSFP28.
BMH1030-BPS-2SR416SR	Комбинированный модуль ByPass, BMH1030, 2х пары 40/100Gb SR4 BPS, слоты 16х10G.
BMH1030-BPS-2x40LR416LR	Комбинированный модуль ByPass, BMH1030, 2х пары 40Gb LR BPS, слоты 16х10G.
BMH1030-BPS-2x100LR416LR	Комбинированный модуль ByPass, BMH1030, 2х пары 100Gb LR BPS, слоты 16х10G.

РАЗМЕРЫ И ВЕС

BMH1001

Наименование	Высота	Ширина	Глубина	Вес
Базовое шасси ВМН1001	45 мм	213 мм	317.5 мм	2,65 кг
Модуль BMH10xx-Q4X8	41 мм	118 мм	250 мм	0,68 кг
Модуль BMH10xx-BPS-2SR	41 мм	118 мм	250 мм	0,99 кг
Модуль ВМН10хх-4хС	41 мм	118 мм	250 мм	0,68 кг
Модуль ВМН10xx-SM-S	41 мм	118 мм	250 мм	1,15 кг

BMH1010

Наименование	Высота	Ширина	Глубина	Вес
Базовое шасси ВМН1010	45 мм	439 мм	495 мм	9,47 кг
Модуль ВМН10хх-Х12	41 мм	118 мм	250 мм	0,68 кг
Модуль BMH10xx-Q4X8	41 мм	118 мм	250 мм	0,68 кг
Модуль BMH10xx-BPS-2SR	41 мм	118 мм	250 мм	0,99 кг
Модуль BMH10xx-BPS-6SR	41 мм	118 мм	250 мм	0,99 кг
Модуль BMH10xx-BPS-6LR	41 мм	118 мм	250 мм	0,99 кг
Модуль BMH10xx-4xC	41 мм	118 мм	250 мм	0,68 кг
Модуль BMH10xx-SM-S	41 мм	118 мм	250 мм	1,15 кг

BMH1010-Plus

Наименование	Высота	Ширина	Глубина	Вес
Базовое шасси ВМН1011	432 мм	432 мм	584 мм	15,36 кг
Модуль BMH10xx-BPS-2SR	41 мм	118 мм	250 мм	0,99 кг
Модуль BMH10xx-BPS-6SR	41 мм	118 мм	250 мм	0,99 кг
Модуль ВМН10хх-Q4Х8	41 мм	118 мм	250 мм	0,68 кг
Модуль ВМН10хх-Х12	41 мм	118 мм	250 мм	0,68 кг
Модуль ВМН10хх-SM-S	41 мм	118 мм	250 мм	1,15 кг
Модуль ВМН10хх-4хС	41 мм	118 мм	250 мм	0,68 кг
Модуль BMH10xx-BPS-6LR	41 мм	118 мм	250 мм	0,99 кг

BMH1030

Наименование	Высота	Ширина	Глубина	Вес
Базовое шасси ВМН1030	133,4 мм	438,5 мм	740 мм	40,00 кг
Модуль ВМН1030-С16	47 мм	217 мм	410 мм	2,72 кг
Модуль BMH1030-C8Q8	47 мм	217 мм	410 мм	1,09 кг
Модуль ВМН1030-Х24	47 мм	217 мм	410 мм	0, 96 кг
Модуль BMH1030-BPS-2SR416SR	47 мм	217 мм	410 мм	2,90 кг
Модуль BMH1030-BPS-2x40LR416LR	47 мм	217 мм	410 мм	2,74 кг
Модуль BMH1030-BPS-2x100LR416LR	47 мм	217 мм	410 мм	2,74 кг
Модуль BMH1030-SM-C5	47 мм	217 мм	410 мм	2,00 кг
Модуль BMH1030-SM-C8	47 мм	217 мм	410 мм	2,00 кг


МОДЕЛИ СЕРИИ ВМН10XX

Линейка продуктов	Компонент	Технические характеристики
ВМН1001	Конфигурация источника питания	Питание 1+1: 2 блока питания;С возможностью «горячей» замены.
	Макс. потребляемая мощность/теплоотдача	 286 ватт; 975 БТЕ/ч; Полностью загруженная система, загрузка всех портов – 100%.
	Модули питания переменного тока	 Мин./макс. напряжение: входное напряжение: 90 В - 284 В перем. тока, 57-63 Гц; Макс. входной ток в режиме экономии электроэнергии: 3 А при 115 В, 1,5А при 230 В.

Линейка продуктов	Компонент	Технические характеристики
BMH1010	Конфигурация источника питания	 Питание 1+1: 2 блока питания; С возможностью «горячей» замены.
	Макс. потребляемая мощность/теплоотдача	 360 ватт; 1227,6 БТЕ/ч; Полностью загруженная система, загрузка всех портов – 100%.
	Модули питания переменного тока	 Мин./макс. напряжение: 100 В - 127 В перем. тока, 200 - 240 В перем. тока, 50/60 Гц; Макс. входной ток в режиме экономии электроэнергии: 5,8 А при 100 В, 2,9 А при 200 В.
	Модули питания постоянного тока	 Мин./макс. напряжение: От - 40,5 В до 60 В пост. тока; Макс. входной ток в режиме экономии электроэнергии: 24 А при -40,5 В.
BMH1011	Конфигурация источника питания	 Питание 1+1: 2 блока питания; С возможностью «горячей» замены.
	Макс. потребляемая мощность/теплоотдача	 650 ватт; 2 216 БТЕ/ч; Полностью загруженная система, загрузка всех портов – 100%.
	Модули питания переменного тока	 Мин./макс. напряжение: 100 В - 127 В перем. тока, 200 - 240 В перем. тока, 50/60 Гц; Макс. входной ток в режиме экономии электроэнергии: 7 А при 100 В, 3,5 А при 200 В.
	Модули питания постоянного тока	 Мин./макс. напряжение: от -40,5 до 60 В пост. тока; Макс. входной ток в режиме экономии электроэнергии: 20 А при -40,5 В.
вмн1030	Конфигурация источника питания	 Питание 1+1: 2 модуля питания; Питание 2+2: 4 модуля питания; С возможностью «горячей» замены.
	Макс. потребляемая мощность/теплоотдача	 1850 ватт; 6312,4 БТЕ/ч (плата управления версия 1); 2000 ватт; 6824,3 БТЕ/ч (плата управления версия 2); Полностью загруженная система, загрузка всех портов – 100%.
	Модули питания переменного тока	 Мин./макс. напряжение: 100 В - 115 В перем. тока, 200 - 240 В перем. тока, 50/60 Гц; Макс. входной ток в режиме экономии электроэнергии: 14 А при 100 В, 10 А при 200 В.
	Модули питания постоянного тока	 Мин./макс. напряжение: от - 40 В до -72 В пост. тока; Макс. входной ток в режиме экономии электроэнергии: 48 А при -40 В.

